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1. INTRODUCTION

Piezoelectric materials are widely used as sensors and actuators in smart materials and
structures due to their fast responses and some other advantages. As an actuator, it can be
used to control structural shapes or to suppress undesired vibrations in certain degrees for
some flexible lightweight structural elements or structures. In such cases, geometrical
non-linearity should be considered in the theoretical formulations.

Recently, the axisymmetric free vibration analysis were performed by using the
semi-analytical and semi-numerical method for simply supported non-linear piezoelectric
circular plates [1] and simply supported circular shallow spherical shells [2]. Since
analytical solutions can only be obtained for some simple cases, numerical methods should
be adopted to obtain responses of smart structural elements or smart structures under
various loading conditions.

The present authors recently proposed a new method called the differential quadrature
element method (DQEM) and performed static, buckling and free vibration analyses of
frame structures [3] and fundamental frequency of circular plates with stepped thickness by
using DQEM [4]. It should be mentioned that recently Liew and his colleagues also
independently proposed the differential quadrature element method (DQEM) [5-9] and
performed static and free vibration analysis of Reissner-Mindlin rectangular and polar
plates by using DQEM [5-9]. The ideas for both methods with the same name are similar,
the main difference is that Wang et al. [3, 4] focused on the thin plates, while Liew et al.
[5-9] focused on the moderately thick and thick plates. The numerical examples indicate
that the DQEM is also very convenient to use and can yield very accurate results with small
computational effort for plates with discontinuities on loading, geometry and boundary
conditions. In view of the fact that the previous researchers have not analyzed the
fundamental frequency of circular plates and circular shallow spherical shells with
piezoelectric actuators by DQEM, the writers have computed frequencies using DQEM.
The problem being considered in this paper involves plates and shallow shells of an
isotropic material. The material and electrical properties of the actuator are also isotropic.
Geometrical non-linearity but with small amplitudes are considered for the free vibration
analysis. For completeness, the theoretical formulations for the shallow shells are briefly
given, followed by the detailed solution procedures and formulations by DQEM. The
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circular plate is treated as a special case. The title problem is analyzed and the DQEM
results are compared with the results in the open literature [1, 2] to show the applicability of
the DQEM.

2. GOVERNING DIFFERENTIAL EQUATIONS

For simplicity and without loss of generality, only axisymmetric deformation of the
piezoelectric circular shallow spherical shell is considered in this paper. The shell is
composed of three layers, the upper and lower layers are uniform this piezoelectric
materials. Both materials are isotropic in mechanical and/or electric properties. A von
Karman-type geometric relation is adopted. The well-known governing differential
equations are
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where Q, is the shear force in the r direction, p, h are the mass density and shell’s thickness,
z denotes the initial position of the shallow shell computed by
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where f and a are the height of the shell and the radius of the circular edge. The total
in-plane forces N,, Ny and the bending moments M,, M, are computed by
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in which superscripts m, e represent the mechanical and electrical quantities respectively.

After some manipulations, the non-linear governing differential equations can be
expressed in terms of N(=rN}") and w as follows:
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where 0 < r < a, D = ER3/12(1 — u?) is the bending stiffness, E, i, w are Young’s modulus,
the Poisson ratio and deflection respectively.

The responses can be decomposed into two parts, one is the static part independent of the
time and the other is the dynamic part depending on the time, namely,

w(r, t) = wg(r) + wy(r,t), N(r,t) = N(r) + N,(r,1). (5)

Substituting equation (5) into equation (4) yields the governing differential equations
(equation (6)) for static deformations, namely,
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and the governing differential equations (equation (7)) for dynamic responses, i.e.,
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where the electric quantities are assumed to be independent of time for the free vibration
analysis. For a small-amplitude free vibration in the vicinity of the non-linear static
position, the non-linear terms in the dynamic equations, i.e., the last term in both equations
of equation (7), can be dropped. The boundary conditions can be also decomposed into two
parts. This is straightforward and details may be found in references [2, 10].
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3. SOLUTION PROCEDURES BY DQEM

For demonstration and comparison purposes, one considers the cases of small-amplitude
free vibrations of the shell in the vicinity of the non-linear static position. The shell is simply
supported at its edge and uniformly distributed voltages but with opposite sign are applied
in the upper and lower actuators. Thus Ny = 0, and M7 is a constant. For this case, w, can
be assumed as

w(r,t) = W (r)sin wt, (8)

where w is the circular frequency.
In order to obtain the solutions for the shells, the non-linear static state has to be
obtained first. This can be accomplished by using the DQEM together with the
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Newton-Raphson method to solve equation (6). Due to space limitations, details can be
found in reference [10] and are omitted here.

Let A;;, B;j, C;; and D;; be the weighting coefficients for the first, second, third, and fourth
order derivatives of the unknown deflection w (both w, and W), and A, B¥ be the first and
second order derivatives of the unknown in-plane force N (both N and N .)- Applying the
DQEM to the dynamic governing differential equations (equation (7)) and regularity
conditions at the shell center yields the following algebraic equations in terms of W and

N;, namely,
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where NP1 is the total number of grid points in the r direction and NP = NP1 + 1,r;, W},
w;, N;, N; are the values of r, W, w,, N,, N at the grid point i respectively. Note that W},
wi contains the values of W, w, at all grid points (W;, w;) and its first derivatives at grid
point NP1. The differential quadrature element method and detailed procedures to obtain
various weighting coefficients are given by Wang et al. [3, 4, 10]. The explicit fomulae to
compute these weighting coefficients are also provided in the open literature [11, 12]. It can
be seen that there are NP + NP1 linear algebraic equations in equation (9). Equation (9) is
a generalized eigen value problem, KX = AM X, which can be solved by using standard
solvers to obtain the eigenvalues and eigenvectors without any difficulties.

4. RESULTS AND DISCUSSIONS

A Fortran computer program is written, and the free vibration of non-linear piezoelectric
spherical shallow shells is reanalyzed by the DQEM. Gauss-Lobatto formula is used to
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TaBLE 1

Variation of central deflection and frequencies with the number of grid points (&, = wa>/ph/D;
@y = wy1a°\/ph/D; ¢p* = 0-4; f=0)

Grid number NP1 W(0)/h @4 @,
10 0-72676068 9-6331612 33251183
11 0-72676100 9-6191393 33244581
12 0-72676104 9-6087966 33240003
13 0-72676111 9-6009346 33-236687
14 0-72676072 9-5948231 33234109
15 0-72676196 9-5899804 33232079

determine the non-uniform grid points in the analysis, namely,

1 (==
2 NP1 -1

i1 (i=1,2,...,NPl), (10)
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where NP1 is the number of grid points. Previous research shows that equation (10) can
yield reliable and accurate results even for problems sensitive to grid spacing.
A convergence study is performed to choose the right number of grid points to achieve the
required accuracy. The numerical results with different grids for simply supported circular
plates under control voltage ¢* = 4 are listed in Table 1. For comparison, two parameters
are introduced, namely,
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where e31, h,, ¢ Y are the piezoelectric constants, thickness of the piezoelectric material and
the control voltage applied on the upper surface of the shell respectively. It can be seen from
Table 1 that the variations are within 0-1 per cent for the central deflections as well as the
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Figure 1. Variations of the first frequency (@; = w;a?./ph/D) with control voltages ¢* (equation (11)).
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first and second frequencies with grid points greater than 12. It is also seen that the
variations are much smaller for the deflections than for the frequencies. The grid number is
set to 15 for the results presented in this paper.

The free vibration of shallow shells with different heights under control voltages is
analyzed. Figure 1 shows the variation of the first frequency (@, = w;a*./ph/D) with
control voltages for shells with different heights, including the circular plates (y = 0). There
are eight curves corresponding toy = 0, 0-5, 1, 1-5, 2, 2-5, 3, 3-5 for curves from the lowest to
the top at ¢* = 0. Due to snapping, no convergent results are obtained for the non-linear
static equations if the control voltages are gradually increased for certain cases. Thus,
curves with symbols corresponding to y = 1-5, 2-5, 3 are not completed in the entire range in
Figure 1. The DQEM results agree well with the semi-analytical and semi-numerical
solutions in references [ 1, 2]. It should be mentioned, however, that the DQEM is easy to
use, can also obtain accurate results with small computational effort and be used to solve
more complicated problems.

The variations of the second frequency (&, = w,a?./ph/D) with control voltages for
shells with different heights are shown in Figure 2. There are eight curves corresponding to
y=0,05,1, 15,2, 25, 3, 3-5 for curves from the lowest to the top at ¢* = 0. Again, due to
snapping, no convergent results are obtained for the non-linear static equations if the
control voltages are gradually increased. Thus, curves with symbols corresponding to
y = 1-5,2'5, 3 are not completed in the entire range in Figure 2. From both figures, it can be
seen that the frequency may increase or decrease with the control voltage depending on the
shell’s height and the applied voltage for the cases considered.

5. CONCLUSIONS

The differential quadrature element method is successfully used for the first time to
analyze the free vibration of piezoelectric circular spherical shallow shells under control
voltages. A geometrical non-linear effect is considered. Detailed formulations and solution
procedures are given and numerical studies are performed. It can be seen that the DQEM
results compare well with the existing data in the open literature.
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Figure 2. Variations of the second frequency (@, = w,a*./ph/D) with control voltages ¢* (equation (11)).
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Based on the results reported herein, one may conclude that the DQEM is a useful and
efficient tool for studying the dynamic behaviors of piezoelectric circular spherical shallow
shells under control voltages. Accurate results are obtained by the DQEM with small
computational efforts. The control voltages may increase or decrease the shell’s frequency.
But whether increase or decrease occurs depends on the shell’s initial configurations as well
as the magnitude of the control voltages.
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